One-sided M-Ideals and multipliers in operator spaces, I
نویسندگان
چکیده
منابع مشابه
One - Sided M - Ideals and Multipliers in Operator Spaces , I
The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...
متن کامل- Sided M - Ideals and Multipliers in Operator Spaces
The theory of M-ideals and multiplier mappings of Banach spaces naturally generalizes to left (or right) M-ideals and multiplier mappings of operator spaces. These subspaces and mappings are intrinsically characterized in terms of the matrix norms. In turn this is used to prove that the algebra of left adjointable mappings of a dual operator space X is a von Neumann algebra. If in addition X is...
متن کاملOperator Spaces Which Are One-sided M-ideals in Their Bidual
We generalize an important class of Banach spaces, namely the M embedded Banach spaces, to the non-commutative setting of operator spaces. The one-sided M -embedded operator spaces are the operator spaces which are one-sided M -ideals in their second dual. We show that several properties from the classical setting, like the stability under taking subspaces and quotients, unique extension proper...
متن کاملOne-sided Ideals and Approximate Identities in Operator Algebras
A left ideal of any C∗-algebra is an example of an operator algebra with a right contractive approximate identity (r.c.a.i.). Indeed, left ideals in C∗-algebras may be characterized as the class of such operator algebras, which happen also to be triple systems. Conversely, we show here and in a sequel to this paper, that operator algebras with r.c.a.i. should be studied in terms of a certain le...
متن کاملLipschitz Spaces and M -ideals
For a metric space (K, d) the Banach space Lip(K) consists of all scalar-valued bounded Lipschitz functions on K with the norm ‖f‖L = max(‖f‖∞, L(f)), where L(f) is the Lipschitz constant of f . The closed subspace lip(K) of Lip(K) contains all elements of Lip(K) satisfying the lip-condition lim0<d(x,y)→0 |f(x) − f(y)|/d(x, y) = 0. For K = ([0, 1], | · |), 0 < α < 1, we prove that lip(K) is a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2002
ISSN: 0030-8730
DOI: 10.2140/pjm.2002.206.287